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Climate variations have a profound impact on marine ecosystems and the communities
that depend upon them. Anticipating ecosystem shifts using global Earth system models
(ESMs) could enable communities to adapt to climate fluctuations and contribute
to long-term ecosystem resilience. We show that newly developed ESM-based marine
biogeochemical predictions can skillfully predict satellite-derived seasonal to multiannual
chlorophyll fluctuations in many regions. Prediction skill arises primarily from successfully
simulating the chlorophyll response to the El Niño–Southern Oscillation and capturing
the winter reemergence of subsurface nutrient anomalies in the extratropics, which
subsequently affect spring and summer chlorophyll concentrations. Further investigations
suggest that interannual fish-catch variations in selected large marine ecosystems can
be anticipated from predicted chlorophyll and sea surface temperature anomalies. This
result, together with high predictability for other marine-resource–relevant biogeochemical
properties (e.g., oxygen, primary production), suggests a role for ESM-based marine
biogeochemical predictions in dynamic marine resource management efforts.

T
he incorporation of biogeochemical pro-
cesses into global climatemodels has trans-
formed them into Earth system models
(ESMs) that aspire to holistically represent
the interacting physical, chemical, and bio-

logical processes shaping global carbon and nut-
rient cycles (1). Unlike physical climate models,
ESMs can explore feedbacks between global
change and carbon fluxes within and between
terrestrial, ocean, and atmospheric reservoirs
(2–4). For oceans, ESMs have further provided
outlooks for marine-resource–relevant changes
beyond warming, including ocean acidification,
deoxygenation, and changing ocean productivity
(5–7).
Although knowledge of potentialmultidecadal

marine resource shifts associated with climate
change is strategically vital, these trends underlie
often irregular seasonal to interannual climate
andmarine resource variations. Failure to anti-
cipate such fluctuations has been a major con-
tributor to past fisheries collapses (8). The desire
to sustain marine resources subject to climate-
driven fluctuations and change has prompted
efforts toward more dynamic, environmentally
informedmarine resource decisions (9), including
integration of seasonal to multiannual physical
climate forecasts intomanagement frameworks
(10–12). Whereas the reliability of physical pre-
dictors alone for anticipating marine ecosystem
responses is often limited (13), recent observa-

tions and idealizedmodeling studies suggest that
biogeochemical drivers (e.g., acidity, oxygen, pri-
mary production)may bemore predictable than
their physical counterparts (14).
The development of seasonal to interannual

marine biogeochemical predictions has been
impeded by diverse challenges. These include
difficulties associated with the integration of bio-
geochemical models with ocean data-assimilation
systems used for forecast initialization (15–17),
uncertainty in both physical and biogeochemical
model structure (18), limited availability of and
difficulties associated with assimilating biogeo-
chemical data (19, 20), and the large computa-
tional cost of retrospective forecast experiments
required to rigorously assess biogeochemical pre-
diction skill. As a result, studies of global bio-
geochemical prediction have relied upon limited
reforecast experiments and idealized configura-
tions distinct from those used for operational
seasonal to multiannual physical climate predic-
tions (14, 21).
In this study, we present results from 2-year

global biogeochemical forecasts initialized on
the first of each month between 1991 and 2017.
Each prediction has 12 ensemble members, creat-
ing a database of nearly 4000 forecasts and 8000
simulation years. The prediction systemwas con-
structed by integrating the Carbon, Ocean Bio-
geochemistry and Lower Trophics (COBALT)
marine biogeochemical model (22) with seasonal
to multiannual climate predictions from the Geo-
physical Fluid Dynamics Laboratory’s (GFDL)
CM2.1 climate model (23). CM2.1 has been shown
to skillfully recreate primary modes of natural
climate variability (24) and has been applied
extensively to study seasonal and multiannual
climate prediction (25, 26). The physical initial-
ization for CM2.1 forecasts was based on GFDL’s

ensemble-coupled data assimilation (ECDA) sys-
tem (27). For the biogeochemical initialization,
COBALT was integrated with the data-assimila-
tive ocean physics following a strategy that care-
fully avoids spurious vertical motions that can
degrade biogeochemical simulations (15). This
integration resulted in substantial reductions
of biogeochemical biases relative to nonassimi-
lative simulations (15, 22). The resulting ocean-
state estimate captures large-scale sea surface
temperature (SST) and chlorophyll variations
(figs. S1 to S4).
Predictions were assessed against 20 years of

satellite-derived chlorophyll estimates (28), which
offer a near-global, continuous, multidecade time
series of ocean ecosystem anomalies. Chlorophyll
has also been found to be a robust indicator of
cross-ecosystem (29) and, in some places, inter-
annual fish-catch variations (30). Ensemble mean
predictions are drift corrected with a lead-
dependent monthly forecast climatology from
the 27-year ensemble mean forecasts (see the
materials and methods in the supplementary
materials for further details).
The global marine biogeochemical prediction

system produces skillful chlorophyll predictions
one season in advance in many ocean regions
(Fig. 1A). Significant chlorophyll prediction skill
above that of a persistence forecast extends
beyond 1 year in some regions (Fig. 1, B to F,
and fig. S5). Although skill varies by region and
initialization month, characteristic patterns em-
erged for tropical and extratropical regions. In
the tropical Pacific (Fig. 1B), prediction skill is
limited to maximum leads of 12 months, with
peak skill for fall/winter forecasts and reduced
skill for boreal spring predictions. This pattern
closely resembles the El Niño–Southern Oscilla-
tion (ENSO) SST prediction skill (fig. S6) and is
consistent with prediction of ENSO-associated
nutricline variations, which peak in boreal win-
ter but have a weak boreal spring signal (31, 32).
Strong negative and positive winter chloro-
phyll anomalies are tightly linked to El Niño
and La Niña events, respectively (Fig. 2A). This
relationship also holds for the tropical Indian
Ocean (Fig. 2B), which is subject to a lagged
ENSO signal carried into the Indian Ocean
through atmospheric teleconnections (33).
Chlorophyll predictions in extratropical sys-

tems are characterized by alternating predict-
able and unpredictable forecast windows (Fig. 1,
D to F; note diagonal bands of alternating high-
and low-anomaly correlation coefficients). In the
subtropical to temperateNorth Atlantic (Fig. 1D),
chlorophyll anomalies are not predictable in
winter but are predictable during the productive
spring, summer, and fall (i.e., the growing sea-
son). Furthermore, prediction skill remains evi-
dent through two growing seasons with leads up
to 24 months. This skill results from successfully
simulating the persistence of initial subsurface
nutrient anomalies across seasons and success-
fully simulating the subsequent impact of these
anomalies on surface chlorophyll. Winter nitrate
(NO3) anomalies linked to North Atlantic Os-
cillation (NAO)–driven wind anomalies (fig. S7)
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remain evident beneath the mixed layer during
summer and reemerge when the mixed layer
deepens during the subsequent fall and winter
(Fig. 3A). High-NO3 anomalies then lead to ele-
vated chlorophyll during the following growing
season (Fig. 3B). A composite of high- versus low-
chlorophyll years (fig. S8) confirms that high-
NO3 anomalies are associated with enhanced
NO3-based spring phytoplankton production,
followed by enhanced ammonium-based (i.e., re-
cycled) production during the summer and fall.
This chlorophyll reemergence pattern resembles
the mechanism for predicting midlatitude SST
anomalies (34) but, unlike the predictable SST
signal, which occurs after the breakdown of sum-
mer stratification, the predictable chlorophyll sig-
nal occurs during the stratified period.
Other extratropical areas exhibit variations on

the basic reemergence mechanism illustrated for
the North Atlantic. The South Pacific reemer-
gence signal remains exceptionally strong through
2 years (Fig. 1E; Fig. 3, C and D; and fig. S9). In
the North Pacific, prediction skill is weaker and
limited in spatial extent (Fig. 1F; Fig. 3, E and F;
and fig. S10). This may reflect a greater role of
atmospheric iron deposition in the North Pacific
masked by our current use of a constant depo-
sition climatology (22) or stronger stochastic
atmospheric forcing causing irregular and spa-
tially less homogeneous chlorophyll fluctuations
relative to other regions (35).

Successful prediction of chlorophyll anomalies
in some regions across multiple years gives cause
for optimism concerning the utility of biogeo-
chemical predictions for marine resource appli-
cation. As a proof of concept, we considered the
capacity to anticipate interannual fluctuations in
aggregate fish catch using predicted chlorophyll
and SST, two known “bottom-up” drivers of fish
catch (12, 29, 30). We assessed predictions in
coastal large marine ecosystems (LMEs, fig. S11)
accounting for over 95% of global fish catch (36).
Annualmean fish-catch data were obtained from
the Sea Around Us project (37). Despite coarse
ocean grids that limit resolution of coastal circu-
lation and ecosystem processes, global climate pre-
diction systems have significant SST-forecasting
skill for many LMEs (38, 39), and our results
show that this also holds for interannual chloro-
phyll anomalies (fig. S12).
We assessed the potential for biogeochemical

predictions to inform interannual fish-catch fluc-
tuations in a subset of LMEs based on three con-
ditions. First, we identified LMEs in which past
interannual catch fluctuations are significantly cor-
related with observed SST or chlorophyll anom-
alies over the retrospective forecast period. We
considered both concurrent and 1-year–lagged
relationships. The concurrent relationship tests
for rapid catch responses such as immigration
during favorable conditions. A 1-year lag allows
for propagating environmental effects such as

recruitment of short-lived species.Whereas longer
lag responses between environmental drivers
and ecosystem responses are possible (40, 41),
contemporaneous or short lag signals have pro-
ven to be the most tractable for management-
driven forecasts (42) and are of primary interest
for assessing the utility of the interannual bio-
geochemical predictions herein. Twenty-five out
of the 54 heavily fished LMEs considered satis-
fied this first condition (Fig. 4 and figs. S13 and
S14). The absence of a significant relationship
in 29 LMEs does not imply that there are no
“bottom-up” constraints on these systems, only
that a relationship between interannual aggre-
gate catch and SST or chlorophyll anomalies
could not be discerned over the retrospective
forecast period.
Second, we subselected LMEs for which the

global biogeochemical prediction system could
predict observed annual mean SST or chlorophyll
anomalies with significant skill. Such cases were
ubiquitous, with 38 of 54 LMEs satisfying this
condition despite the model’s coarse ocean reso-
lution (fig. S12). Fifteen of these LMEs also satis-
fied our first condition (Fig. 4).
Third, we subselected LMEs in which the

bottom-up relationship was strong enough and
environmental predictions were skillful enough
to significantly explain the reported aggregate
interannual fish-catch anomalies. Consistent
with our first selection condition, predicted
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Fig. 1. Prediction skill in
reproducing observed
variations of monthly chloro-
phyll anomaly. (A) Chlorophyll
prediction skill measured by the
mean monthly anomaly corre-
lation coefficient (ACC)
between predicted and
observed (satellite) chlorophyll
at a 1- to 3-month lead time
during the period 1997–2017.
Stippled areas indicate that the
correlation is significantly
greater than 0 with 95% confi-
dence. Areas with less than
80% satellite chlorophyll cov-
erage are masked in gray.
(B to F) Chlorophyll prediction
skill as a function of forecast
initialization month (x axis)
and lead time (y axis) in the
Tropical Pacific (170°E–100°W,
10°S–10°N), Indian (55°E–95°E,
25°S–0°S), North Atlantic
(70°W–20°W, 25°N–40°N),
North Pacific (170°E–130°W,
25°N–45°N), and South Pacific
(170°W–100°W, 35°S–15°S)
oceans. Circles indicate sig-
nificant (P < 0.05) prediction
skill: White circles indicate
that the chlorophyll forecast skill from the biogeochemical prediction system exceeds the persistent forecast skill; gray circles indicate
that the skill of the biogeochemical forecast is significant, but it is not significantly better than a persistence forecast. Three-month running
mean anomalies are used for the calculation of ACCs.
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fish catch is based on a simple linear regres-
sion of catch anomalies against predicted envi-
ronmental (SST, chlorophyll) anomalies with
contemporaneous or 1-year–lagged relationships
(see materials and methods). We focused on

LMEs for which significant fish-catch relation-
ships remained after detrending to reduce the
potential of an erroneous attribution of fishing
effort trends onto environmental factors. Six
systems satisfied all three conditions (Fig. 4,

table S1, and figs. S15 and S16): Gulf of Alaska,
California Current, Humboldt Current, Canadian
Eastern Arctic, Agulhas Current, and Somali
Coastal Current systems (Fig. 4, lower panels).
Four out of six LMEs exhibited significant
fish-catch prediction skill for an additional year
(i.e., at a 1- to 2-year lead time; Fig. 4, green
lines).
In the Gulf of Alaska LME, catch fluctuations

covaried with predictable coastal SST variations
associated with the Pacific Decadal Oscillation, a
basin-scale mode of climate variability with di-
verse fisheries links (38). In the California Cur-
rent LME, the model predicts a recent observed
chlorophyll increase off the Baja Peninsula that
covaried with increased reported catch from this
region (Fig. 4C). Weak ENSO imprints are also
apparent, particularly a catch reduction after
the 1997–1998 El Niño. This signal is more prom-
inent in the Humboldt Current (Fig. 4D). In the
Canadian Eastern Arctic LME, a predictable
warming in the 1990s covaried with increasing
northern prawn catches, both of which leveled
off as temperatures stabilized in the 2000s (Fig.
4E). This LME is toward the cold-water end of
the northern prawn range (43), suggesting a
favorable response to warming. More complex
interactions with changing plankton dynamics,
however, cannot be ruled out (43).
In the Indian Ocean, increasing Agulhas LME

catch between 1996 and 2004 corresponds to
the increased prominence of the sardine fishery

Park et al., Science 365, 284–288 (2019) 19 July 2019 3 of 5

Fig. 2. Observed and
predicted chlorophyll
anomalies in the
tropical oceans.
(A) Observed (black)
and predicted (green)
wintertime (December-
January-February)
normalized chlorophyll
anomalies in the tropical
Pacific (170°E–100°W,
10°S–10°N). The predicted
anomalies are 1 April–
initialized chlorophyll
predictions (i.e., forecast
lead time is 9 to
11 months). (B) Similar
to (A) but for 1 April–
initialized springtime
(February-March-April)
chlorophyll anomalies
in the Indian Ocean
(55°E–95°E, 25°S–0°S;
i.e., forecast lead time is
11 to 13 months). El Niño and La Niña years are marked with “El” and “La,” respectively.

Fig. 3. Reemergence of subsurface biogeo-
chemical anomalies linked to chlorophyll
prediction skill in the extratropical oceans.
(A) Temporal evolution of 1 March–initialized
NO3 anomaly prediction in the North Atlantic
Ocean (70°W–20°W, 25°N–40°N). NO3

anomalies are regressed onto predicted
SON (September-October-November) surface
chlorophyll concentrations during the following
year. That is, positive values indicate that
elevated NO3 at the specified time and
depth are associated with elevated SON
chlorophyll 18 to 21 months after the initializa-
tion.The anomalies are 3-month running means.
(B) Similar to (A) but for 1 March–initialized
chlorophyll anomaly prediction. (C) and
(D) are similar to (A) and (B), respectively,
but for 1 March–initialized prediction in the
south Pacific (170°W–100°W, 35°S–15°S)
regressed onto 1 March–initialized July-
August-September chlorophyll prediction
of the following year. (E) and (F) are similar
to (A) and (B), respectively, but for 1 February–
initialized prediction in the North Pacific
(170°E–130°W, 25°N–45°N) regressed onto
1 February–initialized June-July-August
chlorophyll prediction of the following
year. Shaded areas represent the 95%
confidence region.
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(44). Although debate over the cause of this in-
crease remains, its consistency with a lagged
chlorophyll relationship is suggestive of a recruit-
ment link. Catch variations in the neighboring
Somali Coastal Current are similar to those in
the Agulhas, but the underlying characteristics of
chlorophyll predictability are different. Agulhas
anomalies follow amidlatitude reemergence pat-
tern similar to that of the extratropical areas
shown in Fig. 1, whereas the Somali system ex-
hibits relatively limited chlorophyll prediction
skill because of equatorial waves repeatedly trig-

gered by ENSO and the Indian Ocean dipole (fig.
S17) (45). In both the Agulhas and Somali sys-
tems, annual fish catch was predictable up to 2
to 3 years in advance using the 1-year–lagged
relationship between catch and chlorophyll.
Although only six LMEs met the most strin-

gent criteria for skillful prediction of interan-
nual catch anomalies from SST or chlorophyll,
many notable relationships for individual climate-
sensitive fish stocks may underlie aggregate catch
relationships (fig. S18). More detailed accounting
for fish-stock dynamics (42) and variations in

fishing effort could also better isolate predict-
able bottom-up signals (30). The prediction skill
threshold at which forecasts become useful is
fishery dependent, but recentmanagement strat-
egy evaluations suggest an elevated likelihood of
utility for species with short prerecruit survival
windows or strong environmental bottlenecks
(12, 42). In addition, biogeochemical prediction
systems can extend beyond SST and chlorophyll
to include other potential drivers, including oxy-
gen, acidity, net primary production (NPP), and
zooplankton. Assessment of NPP predictions
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Fig. 4. Potential utility of marine biogeochemistry prediction for
annual fish-catch prediction. (A) All shaded LMEs represent regions
where past annual fish-catch fluctuations are significantly correlated with
observed bottom-up factors [i.e., SST or chlorophyll (CHL)]. Dark gray
represents regions where the ESM-based prediction system can predict
bottom-up forcing changes, and color shadings represent regions where
the ESM-based prediction system can predict both bottom-up forcing
changes and reported fish catch. Bottom-up factors and the time lag
used for fish-catch predictions are shown near each predictable LME.
(B to G) Reported (black lines) and predicted (colored lines) annual mean
fish catches in (B) Gulf of Alaska, (C) California Current, (D) Humboldt
Current, (E) Canadian Eastern Arctic, (F) Agulhas Current, and (G) Somali
Coastal Current LMEs (unit: 103 tonnage). Predicted annual fish catches

are based on the 1 January–initialized SST (for the Gulf of Alaska and
Canadian Eastern Arctic systems) or chlorophyll (for other systems)
predictions in the coming year (i.e., forecast lead time is 0 to 1 year; red
lines) and the following year (i.e., forecast lead time is 1 to 2 years;
green lines). In each LME, the time lag at which the maximum fish-catch
prediction skill occurs is used for the fish-catch prediction. For example,
the fish-catch predictor for Agulhas Current is the annual mean chlorophyll
in the previous year, thus the observed annual mean chlorophyll in the
previous year is used for the 0- to 1-year lead-time forecast. Similarly,
1 January–initialized chlorophyll predictions for the coming and following
years are used for the 1- to 2-year and 2- to 3-year lead-time forecasts
in the Agulhas Current system. Asterisks indicate the significant (P < 0.05)
correlation between reported and predicted annual fish catches.
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against satellite-based NPP algorithms suggests
patterns of predictability similar to those of chlo-
rophyll (fig. S19), whereas model-based assess-
ments of the potential predictability of other
drivers suggest that they may be more predict-
able than chlorophyll or SST (fig. S20). For exam-
ple, subsurface oxygen predictions that accompany
the skillful California Current LME chlorophyll
predictions highlighted in Fig. 4 were robust
throughout our 2-year prediction horizon (Fig.
5). Such lasting and predictable “biogeochemical
memory” gives cause for further optimism con-
cerning the benefit of extending physical climate
predictions to marine biogeochemical predictions
for marine resource management in a dynamic
environment.
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Fig. 5. Oxygen prediction in
the California Current LME as
an example of extension to
other biogeochemical stressor
properties. Observed oxygen
from the California Cooperative
Fisheries Investigations
(CalCOFI) program (black
lines) and 1 January–initialized
oxygen prediction for the coming
year (0- to 1-year lead time;
red line) and for the following year
(1- to 2-year lead time; green
line). Dissolved oxygen shown
here is the averaged value between the 200- and 500-m depth in the CalCOFI region. Asterisks
indicate a significant (P < 0.05) correlation between observed and predicted oxygen.
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